课程咨询
美研留学资料领取

扫码添加助教

免费领取

备考资料大礼包

扫码关注公众号

GMAT数学高分解题方法

2021-06-26 10:24:00来源:网络

  今天,美研菌为大家带来GMAT数学高分解题方法,希望对大家GMAT备考有所帮助。

  1

  【数形结合】

  数形结合的思想,实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合。

  通过对图形的认识、数形结合的转化,可以培养思维的灵活性、形象性,使问题化难为易,化抽象为具体,通过“形”往往可以解决用“数”很难解决的问题。

  2

  【变量替换】

  换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果。

  换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的。

  3

  【学会转化】

  所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法。

  一般是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题。

  转化与化归的思想方法是数学中最基本的思想方法。数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现。

  各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段,所以说转化与化归是数学思想方法的灵魂。

  4

  【函数与方程】

  函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题。

  方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理, 实现问题与方程的互相转化接轨,达到解决问题的目的。

  5

  【分类讨论】

  所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答。

  实质上分类讨论是化整为零,各个击破,再积零为整的策略。分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到:确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论。

课程推荐》》更多

  GMAT直播VIP小班    GMAT直播精讲班    GMAT录播课
(VIP小班/全科班+1对1)(全科精讲/单项备考) (全科班/单项班)
 72.5课时 ¥18800 61课时 ¥7796 134课时 ¥14680

本文关键字: GMAT,数学,解题方法

添加美研助教号 回复【GMAT】

获取2024GMAT考试最新复习资料

更多资料
更多>>
更多内容

添加美研助教号

回复【GMAT】获取备考必看资料包

新东方美研备考资料
GRE录播课(全科班/单项班) GMAT6-8人直播VIP小班 托福直播精讲班(30天/60天)
更多>>
更多惊喜>>
更多>>
更多资料